Math 522 Exam 11 Solutions

1. Is 99 a quadratic residue modulo 151? Be sure to indicate in any symbols used whether they are Legendre or Jacobi symbols.
BONUS: Is 151 a quadratic residue modulo 99 ?
151 is prime, hence we can work entirely with Legendre symbols. $\left(\frac{99}{151}\right)=$ $\left(\frac{3}{151}\right)^{2}\left(\frac{11}{151}\right)=\left(\frac{11}{151}\right)$. Now $11 \equiv 151 \equiv 3(\bmod 4)$, so by quadratic reciprocity this equals $-\left(\frac{151}{11}\right)=-\left(\frac{8}{11}\right)=-\left(\frac{2}{11}\right)^{3}=-\left(\frac{2}{11}\right)=-(-1)^{\frac{11^{2}-1}{8}}=$ $-(-1)^{15}=1$. Hence 99 is a quadratic residue modulo 151 .

99, however, is not prime, so we must work with Jacobi symbols. $\left(\frac{151}{99}\right)=$ $\left(\frac{52}{99}\right)=\left(\frac{2}{99}\right)^{2}\left(\frac{13}{99}\right)=\left(\frac{13}{99}\right)$. Because $13 \equiv 1(\bmod 4)$, by quadratic reciprocity this equals $\left(\frac{99}{13}\right)=\left(\frac{8}{13}\right)=\left(\frac{2}{13}\right)^{3}=\left(\frac{2}{13}\right)=(-1)^{\frac{13^{2}-1}{8}}=(-1)^{21}=-1$. Had the answer been 1, this would be inconclusive; however since the answer is -1 we can conclude that 151 is not a quadratic residue modulo 99 .
2. For all odd primes p, prove that

$$
\left(\begin{array}{l}
\frac{5}{p}
\end{array}\right)= \begin{cases}1 & \text { if } p \equiv 1,9,11,19(\bmod 20) \\
-1 & \text { if } p \equiv 3,7,13,17(\bmod 20) \\
0 & \text { if } p=5\end{cases}
$$

By the division algorithm, we can set $p=20 k+a$, for some $0 \leq a<20$. Since p is an odd prime, in fact $a \in\{1,3,5,7,9,11,13,17,19\}$. If $a=5$, then $5 \mid p$ so in fact $p=5$. Otherwise, since $5 \equiv 1(\bmod 4)$, by quadratic reciprocity $\left(\frac{5}{p}\right)=\left(\frac{20 k+a}{5}\right)=\left(\frac{a}{5}\right)$. For convenience, we calculate this for a complete residue system $\{1,2,3,4\}$. $\left(\frac{1}{5}\right)=1,\left(\frac{2}{5}\right)=(-1)^{\frac{5^{2}-1}{8}}=(-1)^{3}=$ $-1,\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=(-1)^{\frac{3^{2}-1}{8}}=-1,\left(\frac{4}{5}\right)=\left(\frac{2}{5}\right)^{2}=1$.

Putting it all together, we have $\left(\frac{1}{5}\right)=\left(\frac{11}{5}\right)=1,\left(\frac{3}{5}\right)=\left(\frac{13}{5}\right)=-1,\left(\frac{7}{5}\right)=$ $\left(\frac{17}{5}\right)=\left(\frac{2}{5}\right)=-1,\left(\frac{9}{5}\right)=\left(\frac{19}{5}\right)=\left(\frac{4}{5}\right)=1$.
3. High score $=103$, Median score $=85.5$, Low score $=55$

